高中数学函数性质-单调性与奇偶性

高中数学函数性质-单调性与奇偶性

知识点1:单调性

1、定义法:利用定义证明函数单调性的一般步骤是:①任取x1、x2∈D,且x1<x2;

②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等);

2、导数法:

设函数y=f(x)在某区间D内可导。如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x)<0,则f(x)在区间D内为减函数。

补充

a.若使得f′(x)=0的x的值只有有限个,则如果f ′(x)≥0,则f(x)在区间D内为增函数;如果f′(x) ≤0,则f(x)在区间D内为减函数。

b.单调性的判断方法:定义法及导数法、图象法、复合函数的单调性(同增异减)、用已知函数的单调性等。

1、若f(x),g(x)均为增(减)函数,则f(x)+g(x)仍为增(减)函数。

2、互为反函数的两个函数有相同的单调性。

3、y=f[g(x)]是定义在M上的函数,若f(x)与g(x)的单调性相同,则其复合函数f[g(x)]为增函数;若f(x)、g(x)的单调性相反,则其复合函数f[g(x)]为减函数,简称”同增异减”。

4、奇函数在关于原点对称的两个区间上的单调性相同;偶函数在关于原点对称的两个区间上的单调性相反。


知识点2:奇偶性

1、图象的对称性质:

一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称;

2、设f(x),g(x)的定义域分别是D1,D2那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇

3、任意一个定义域关于原点对称的函数f(x)均可写成一个奇函数g(x)与一个偶函数h(x)和的形式,则

高中数学函数性质-单调性与奇偶性
4、奇偶函数图象的对称性

(1)若y=f(a+x)是偶函数,则f(a+x)=f(a-x)↔f(2a-x)=f(x)↔f(x)的图象关于直线x=a对称;(2)若y=f(b+x)是偶函数,则f(b-x)=-f(b+x)↔f(2a-x)=-f(x)↔f(x)的图象关于点(b,0)中心对称

5、一些重要类型的奇偶函数:

高中数学函数性质-单调性与奇偶性


文章部分来源于网络,如有侵权请联系作者删除!

原创文章,作者:修行,如若转载,请注明作者昵称:修行及出处:https://wp.fjsqywlkj.top/subject-knowledge/high-school-mathematics/3082.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022年5月2日 13:00
下一篇 2022年5月3日 18:57

相关推荐

发表评论

登录后才能评论
在线客服
微信小程序
微信小程序
QQ小程序
QQ小程序
QQ交流群
分享本页
返回顶部